您正在浏览的是:生命科学学院 >> 导师风采 >> 博士研究生导师 >> 任永 教授

任永,男,1976年1月生,安徽霍邱人,博士后,教授,博士生导师,现任数学计算机科学学院副院长,生物数学二级学科博士点和统计学一级学科硕士点负责人,安徽省学术和技术带头人。

 

邮箱:renyong@126.com

电话:0553-5910643

 


一、主要学习、工作经历和学术兼职:
1、学习经历
  • 1994、9-1998、7 安徽师范大学数学系读本科,获理学学士学位

  • 2000、9-2003、6 安徽师范大学数学系读硕士,获理学硕士学位,研究方向:无穷粒子系统,导师:丁万鼎教授、祝东进教授

  • 2003、9-2006、6 华东理工大学数学系读博士,获理学博士学位,研究方向:随机微分方程及其应用,导师:夏宁茂教授

  • 2008、5- 2010.5 澳大利亚Tasmania大学博士后研究员,研究领域:随机流模型,合作导师:Dr Malgorzata O'Reilly

2、工作经历
  • 1998、7-2003、11 安徽师范大学助教;

  • 2003、11-2006、7 安徽师范大学讲师;

  • 2006、7-2009、11 安徽师范大学副教授(破格);

  • 2009、12起 安徽师范大学教授(破格);

  • 2008、5- 2010.5 澳大利亚Tasmania大学博士后研究员。

二、主要讲授课程:
  • 本科生:概率论与数理统计、高等数学

  • 研究生:随机分析初步、随机微分方程

三、主要研究方向:
  • 倒向随机微分方程、泛函型(随机)微分系统及其能控性、随机流模型

、 目前主持或参与研究的主要课题:
  • 安徽省杰出青年基金:由G-布朗运动驱动的随机微分方程研究(1108085J08),2012.1—2013.12,经费:15万元

  • 国家自然科学基金:由Lévy过程驱动的几类倒向随机微分方程研究(10901003),2010.1—2012.12,经费:16万元

  • 教育部科学技术研究重点项目:由Lévy过程驱动的随机偏泛函微分系统能控性问题研究(211077),2011.1—2013.12,经费:5万元

  • 安徽省自然科学基金青年项目:多值倒向双重随机微分方程研究(10040606Q30),2011.1—2013.12,经费:4万元

  • 安徽省高校省级自然科学研究重大项目:无穷时滞脉冲微分系统及其可控性研究(KJ2010ZD02),2010.1—2012.12,经费:5万元

  • 国家自然科学基金数学天元青年基金项目:反射型倒向随机微分方程及其应用(10726075),2008.1—2008.12,经费:3万元

、 主要研究成果:
(一) 论文(*通讯作者):

             倒向随机微分方程

  1. Ren Yong﹡,Xia NingmaoGeneralized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary conditionStochastic Analysis and Applications  24 (2006) 1013—1033

  2. Ren Yong﹡,Hu Lanying Reflected backward stochastic differential equations driven by Lévy processesStatistics & Probability Letters 77 (2007) 1599—1566

  3. Ren Yong, Lin AihongHu Lanying Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, Journal of  Computational and Applied Mathematics 223 (2009) 701—709

  4. Ren Yong﹡,Fan Xiliang Reflected backward stochastic differential equations driven by a Lévy processANZIAM J.50 (2009) 486—500

  5. Ren YongOn solutions of backward stochastic Volterra integral equations with jumps in Hilbert spacesJournal of Optimization Theory and Applications 144 (2010) 319—333

  6. Ren Yong Mohamed EL Otmani, Generalized reflected BSDEs driven by a  Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition, Journal of Computational and Applied Mathematics 233 (2010) 2027—2043

  7. Ren Yong, Reflected backward doubly stochastic differential equations driven by a Lévy Process, C. R. Acad. Sci. Paris, Ser. I. 348 (2010) 439—444

  8. Ren Yong﹡,Hu Lanying A note on the stochastic differential equations driven by G-Brownian motionStatistics & Probability Letters 81 (2011) 580—585

  9. Ren Yong, Mohamed EL Otmani, Doubly reflected BSDEs driven by a Lévy process, Nonlinear Analysis: Real World Applications 13 (2012) 1252—1267

  10. Ren Yong, Auguste Aman, Multivalued stochastic partial differential-integral equations via backward doubly stochastic differential equations driven by a Lévy process, The African Diaspora Journal of Mathematics  13 (2012) 1—22

  11. Hu LanyingRen Yong﹡,A note on the reflected backward stochastic differential equations driven by a Lévy process with stochastic Lipschitz conditionApplied Mathematics and Computation 218 (2011) 4325—4332

  12. Hu LanyingRen Yong﹡,Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processesJournal of  Computational and Applied Mathematics  229 (2009) 230—239

  13. Fan XiliangRen Yong﹡,Zhu Dongjin, A note on the doubly reflected backward stochastic differential equations driven by a Lévy process, Statistics & Probability Letters 80 (2010) 690—696

  14. Zhou Qing, Ren Yong, Wu Weixing, On solutions to backward stochastic partial differential equations for Lévy processes, Journal of Computational and Applied Mathematics, 235 (2011) 5411—5421

  15. Zhou Qing, Ren Yong﹡, Reflected backward stochastic differential equations with time delayed generators, Statistics & Probability Letters 82 (2012) 979—990

  16. 范锡良,任永,由Lévy过程驱动的反射型倒向随机微分方程,数学学报 542011839—852

    泛函型随机微分方程及其能控性

  17. Ren Yong, Lu ShipingXia NingmaoRemarks on the existence and uniqueness of solutions to stochastic functional differential equations with infinite delayJournal of Computational and Applied Mathematics 220 (2008) 364—372

  18. Ren Yong﹡,Xia NingmaoExistence, uniqueness and stability of solutions to neutral stochastic functional differential equations with infinite delayApplied Mathematics and  Computation  210 (2009) 72—79

  19. Ren Yong, Xia NingmaoA note on the existence and uniqueness of the solution to neutral stochastic functional differential equations with infinite delayApplied Mathematics and  Computation  214 (2009) 457—461

  20. Ren Yong, Chen LiA note on the neutral stochastic functional differential equations with infinite delay and Poisson jumps in an abstract space, Journal of Mathematical Physics 50 (2009) 082704

  21. Ren Yong, Sun Dandan, Second-order neutral impulsive stochastic evolution equations with delay, Journal of Mathematical Physics 50 (2009) 102709

  22. Ren Yong, Sun Dandan, Second order neutral stochastic evolution equations with infinite delay under Carathéodory conditions, Journal of Optimization Theory and Applications 147 (2010) 569—582

  23. Ren YongHu LanyingR. Saktivel, Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, Journal of Computational and Applied Mathematics, 235 (2011) 2603—2614

  24. Ren Yong﹡,Zhou QingChen LiExistence, uniqueness and stability of mild solutions for time-dependent evolution equations with Poisson jumps and infinite delay, Journal of Optimization Theory and Applications, 149 (2011) 315—331

  25. Ren Yong, R. Sakthivel, Existence, uniqueness and stability of mild solutions for second-order neutral stochastic evolution equations with infinite delay and Poisson jumps Journal of Mathematical Physics, 53 (2012) 073517

  26. Ren YongBi Qiang, R. Sakthivel﹡,Stochastic functional differential equations with infinite delay driven by G-Brownian motion, Mathematical Methods in the Applied Sciences, doi: 10.1002/mma.2720

  27. Nikolaos HalidiasRen Yong﹡, An existence theorem for stochastic functional differential equations with delays under weak assumptionsStatistics & Probability Letters 78 (2008) 2864—2867

  28. R. Sakthivel﹡,Yong Ren, N.I.Mahmudov, Approximate controllability of second order stochastic differential equations with impulsive effects, Modern Physics Letters B 2420101559—1572

  29. Hu LanyingRen Yong﹡,Doubly perturbed neutral stochastic functional equationsJournal of  Computational and Applied Mathematics  231 (2009) 319—326

  30. [14] Hu Lanying, Ren Yong﹡,Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays, Acta Applicandae Mathematicae 111 (2010) 303—317

  31. Lin Aihong, Ren Yong﹡,Xia Ningmao, On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators, Mathematical and Computer Modelling 51 (2010) 413—424

  32. R. Sakthivel, Ren Yong, Hyunsoo Kim, Asymptotic stability of second-order neutral stochastic differential equations, Journal of Mathematical Physics 51 (2010) 052701

  33. R. Sakthivel, Ren Yong, Complete controllability of stochastic evolution equations with jumps, Report on Mathematical Physics 68 (2011) 163—173

  34. R. Sakthivel, Ren Yong, Exponential stability of second-order stochastic evolution equations with Poisson jumps, Communications in Nonlinear Science and Numerical Simulation 17 (2012) 4517—4523

  35. R. Sakthivel, P. Revathi Ren Yong﹡,Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Analysis: Theory, Methods & Applications 81 (2013) 70—86

             泛函微分方程及其可控性

  1. Ren Yong﹡, Qin Yan, R. Saktivel, Existence results for fractional order semilinear integro-differential evolution equations with infinite delay, Integral Equations and Operator Theory 67 (2010) 33—49

  2. Hu Lanying, Ren Yong﹡,R.Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum 79 (2009) 507—514

  3. R. Sakthivel, N.I. Mahmudov, Ren Yong﹡, Approximate controllability of the nonlinear third-order dispersion equation, Applied Mathematics and  Computation  217 (2011) 8507—8511

  4. R. Sakthivel, Ren Yong﹡, N.I. Mahmudov, Approximate controllability of semilinear fractional differential systems, Computer and Mathematics with Applications 62 (2011) 1451—1459

  5. R. Sakthivel﹡, Ren Yong, Approximate controllability of fractional differential equations with state-dependent delay, Results in Mathematics, doi: 10.1007/s00025-012-0245-y

             随机流模型

  1. Nigel G. Bean, Małgorzata M. O’Reilly, Ren Yong, Second-order Markov reward models driven by QBD processes, Performance Evaluation 69 (2012) 440—455

(二)获奖
  1. 2004年 安徽师范大学优秀教学二等奖

  2. 2005年 宝钢教育基金理事会优秀学生奖

  3. 2008年 安徽省高校省级教坛新秀奖

  4. 2010年 霍英东教育基金会第十二届高等院校青年教师奖

  5. 2010年 安徽省第六届自然科学优秀学术论文二等奖

  6. 2010年 安徽省省级教学成果三等奖(第一完成人)

  7. 2008年-2010年被聘为安徽师范大学学科建设关键教授岗位

  8. 2010年被遴选为安徽省学术和技术带头人后备人选

  9. 2011年被遴选为安徽省学术和技术带头人